Q.P. Code: 18EE0203

Reg. No: do noder party la ter mars la sel a mail and la sel a sel a

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR

(AUTONOMOUS)

R18

B.Tech II Year I Semester Supplementary Examinations Feb-2021

ELECTROMAGNETIC FIELDS

(Electrical and Electronics Engineering)

Ti	me:	3 h	Nours Max. Marks	s: 60
			PART-A	
			(Answer all the Questions $5 \times 2 = 10$ Marks)	
	1	a	Define curl of a vector.	2M
		b	State vector form of coulombs law.	2M
		c	Define Dielectric Strength.	2M
		d	Define mutual inductance.	2M
		e	State Faraday's law of electromagnetic induction.	2M
			PART-B	
			(Answer all Five Units 5 x $10 = 50$ Marks)	
			UNIT-I	
	2	a	The vector from the origin to point A is given as $(6, -2, -4)$, and the unit vector	5M
			directed from the origin toward point B is $(2, -2, 1)/3$. If points A and B are ten units	
			apart, find the Coordinates of point B.	
		b	A vector field is specified as $G = 24xya_x + 12(x^2+2)a_y + 18z^2a_z$. Given two points	5M
			P(1,2,-1) and Q (2, 1,3), find:	
			(i) G at P;	
			(ii) a unit vector in the direction of G at Q;	
			(iii) a unit vector directed from Q towards P;	
			(iv) the equation of surface on which $G=60$.	
			OR	
	3	Tł	the three vertices of a triangle are located at A(-1,2,5), B(-4,-2,-3), and C(1,3,-2). Find	10M
		(i)	The length of the perimeter of the triangle.	
		(ii) A unit vector that is directed from the midpoint of the side AB to the midpoint of	
		th	e side BC.	
		(ii	i) Show that this unit vector multiplied by a scalar is equal to the vector from A to C	
		ar	d that the unit vector is therefore parallel to AC.	
			UNIT-II	
	4	a	Derive Laplace and Poisson's equation.	5M
		b	Derive Maxwell first equation.	5M
			OR	
	5	Fo	our positive point charges 10 ⁻¹² coulomb each are situated in X-Y plane at points	10M
		(0	,0), (0, 1) (1, 1) and (1, 0) m.Find the electric field and potential at (3/4, 3/4) & (1, 1)	
			UNIT-III	
	6	a	Derive the continuity equation. What is its physical significance?	5M
		b	Derive the point form of ohms law.	5M
			OR	
	7	a	Derive the expression for parallel plate capacitor.	4M
		b	What is the energy stored in a capacitor made of two parallel metal plates each of	6M

b What is the energy stored in a capacitor made of two parallel metal plates each of 30 cm^2 area separated by 5mm in air. $\varepsilon_0 = 8.854 \times 10^{-12}$. The capacitor is charged to potential difference of 500v.

Q.P. Code: 18EE0203

5M

UNIT-IV

8 Derive the expression for torque produced on a closed current carrying when placed in 10M a magnetic field.

OR

- 9 a What is vector magnetic potential? Derive vector poison's equation. 5M
 - **b** A toroid has air core and has a cross sectional area of 10mm² it has 1000 turns and **5M** its mean radius is 10mm. find its inductance?

UNIT-V

Write Maxwell's equation in good conductors for time varying fields and static fields 5M both in differential and integral form.

OR

een weeren diramind liene O rese

11 a A copper wire carries current of 1A. Determine displacement current in the wire at 5M 1MHz for copper $\varepsilon = \varepsilon 0$ and $\sigma = 5.8 \times 10^7$.

b Explain pointing vector and its significance.

END

Page **2** of **2**